

Optical Delay Line | 40 GHz

Applications:	Key features:
Radar Calibration & Testing	Delays: 0.1-500 µsec (fixed)
Signal & Phase Noise Processing	Frequency Range: L, S, C, X, Ku, Ka radar bands (0.1-40GHz) ODL versions
Extension of radar range site	Delay accuracy: 1%
Clutter Canceler	Remote Control: RS-232 or Ethernet
BIT (built-in test)	High Dynamic Range
EW Systems - Jammers	Variety of configurations
Path Delay Simulation	Up to 15 usec can be housed in Mini enclosure

Options:			
ODL with 2, 4, up to 12 switchable delays			
Delay accuracy of 0.1 % (not less then 25 nsec)			
RF Bypass			
Dispersion Compensator for long delay line			
Various Gain			
Control RS-232 or TTL or Ethernet			
Full BIT using signal detection at the receiver			

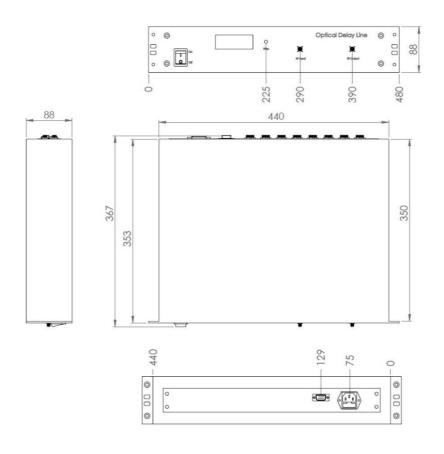
RFOptic's optical delay line ODL series provides a high performance solution for testing and calibration of radar systems, or for RF communication. The ODL converts analog RF signals in the 0.1-20 GHz range to optical signals and back. The RF input signal is converted into an optical modulated signal, which is then transmitted into a single mode fiber, creating a fixed time delay defined by the fiber length. After passing the fiber, the optical signal is converted back into an electrical RF signal, which is identical to the input RF signal. Any fixed time delay between 0.1 and 300 µsec can be provided to customers.

The ODL is operated as a standalone unit with no need for any intervention by the operator - it can be also controlled externally from a PC through various communication interfaces.

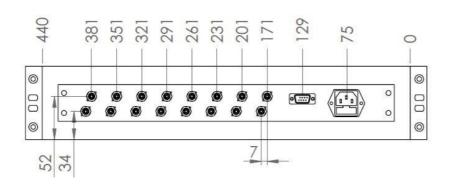
RFOptic's ODL unit is a compact solution, which provides superb performance including accurate time delay and with ultra silent operation. The ODL can be purchased with an integral switch unit supporting up to 8 predefined time delay values in a single ODL unit.

For some applications, RFOptic offers low cost ODL solution up to 5GHz based on direct modulation.

Optical Delay Line | 40 GHz


Table below describes the typical specifications ODL .						
Parameter	Unit	Specifications	Note			
RF						
Frequency range [1]	GHz	L,C,S,X,Ku	Up to 40GHz			
Delay time [2,3,4,5]	µsec	0.1-300	pre-fixed delay defined by customer			
Delay accuracy [6]	%	1	Minimum accuracy of 25 ns			
Delay repeatability	%	<0.01	at +/- 5 °C variations			
System RF gain [7,8]	dB	-30	Without the Delay Line loss			
Noise Figure at 10GHz [7]	dB	40	Without the Delay Line loss			
Group Delay Variation	psec	± 100				
1dB input Compression point	dBm	> 15				
Max input RF power	dBm	+23				
SFDR	dB/Hz ^{2/3}	≥100				
Phase noise (at 10kHz off set)	dBc	<-120	Limited by the measurement tool			
RF Flatness (not including amplifier) [10]	dB	±1dB every 250MHz	For 0.1-40GHz frequency band			
VSWR	-	2:1				
Impedance	Ohm	50				
Mechanical		*				
1550 nm laser CW optical power	mW	≤ 20				
Communication [11]	-	RS-232				
RF connectors	-	SMA	K type is available			
Main AC supply	VAC	220/110	DC version is available			
19" Rack mounting [12]	mm3	440 x 450 x 133	See mechanical drawing			
Operating Temperature	°C	-20 ÷ +60				
Storage	°C	(-40) ÷ +85				

- (1) L, S, C, X, Ku, Kz versions are optional.
- (2) Any fixed delay between 0.1 to 500 µsec is optional.
- (3) Integrated switching unit allowing choosing between 2 to 12 predefined delay values is optional.
- (4) RF bypass is optional.
- (5) Dispersion compensator unit for long delay / high frequency is optional.
- (6) 0.1% accuracy for long delay line is optional.
- (7) Not including delay line loss which is about 1dB per 10 µsec delay and optical switches loss.
- (8) Pre-Amp may be added to improve the noise figure by about 15dB. Post-Amp may be added to improve the system ODL system gain.
- (9) Excluding in-band harmonics.
- (10) Additional ±0.5 dB deviation is considered within spec.
- (11) TTL or Ethernet are optional.
- (12) Variety of ODL enclosures are optional.
- (13) Full BIT is optional (using signal detection at the receiver).
- (14) 20GHz ODL is optional.



Mechanical Layout: 2U/3U Layout

Note: 3U is similar with 133 mm height.

Comment: An option for up to 8 ports rear panel for external delay line.

